Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
J Biosci ; 2015 Mar; 40 (1): 91-111
Artículo en Inglés | IMSEAR | ID: sea-162021

RESUMEN

Whether nucleic acids that circulate in blood have any patho-physiological functions in the host have not been explored. We report here that far from being inert molecules, circulating nucleic acids have significant biological activities of their own that are deleterious to healthy cells of the body. Fragmented DNA and chromatin (DNAfs and Cfs) isolated from blood of cancer patients and healthy volunteers are readily taken up by a variety of cells in culture to be localized in their nuclei within a few minutes. The intra-nuclear DNAfs and Cfs associate themselves with host cell chromosomes to evoke a cellular DNAdamage- repair-response (DDR) followed by their incorporation into the host cell genomes. Whole genome sequencing detected the presence of tens of thousands of human sequence reads in the recipient mouse cells. Genomic incorporation of DNAfs and Cfs leads to dsDNA breaks and activation of apoptotic pathways in the treated cells. When injected intravenously into Balb/C mice, DNAfs and Cfs undergo genomic integration into cells of their vital organs resulting in activation of DDR and apoptotic proteins in the recipient cells. Cfs have significantly greater activity than DNAfs with respect to all parameters examined, while both DNAfs and Cfs isolated from cancer patients are more active than those from normal volunteers. All the above pathological actions of DNAfs and Cfs described above can be abrogated by concurrent treatment with DNase I and/or anti-histone antibody complexed nanoparticles both in vitro and in vivo. Taken together, our results suggest that circulating DNAfs and Cfs are physiological, continuously arising, endogenous DNA damaging agents with implications for ageing and a multitude of human pathologies including initiation of cancer.

2.
Artículo en Inglés | IMSEAR | ID: sea-157123

RESUMEN

Stress induced premature senescence (SIPS) is a relative extension to the concept of exogenous cellular insult. Besides persistent double strand (ds) DNA breaks and increased β-galactosidase activity, biological significance of telomeric attrition in conjunction with senescence associated secretory phenotype (SASP) has been highlighted in SIPS. To gain insight on the potential role of this unique phenomenon invoked upon environmental stress, we sequentially validated the molecular repercussions of this event in ovarian epithelial cells after exposure to methyl isocyanate, an elegant regulator of cellular biotransformation. Persistent accumulation of DNA damage response factors phospho-ATM/γ-H2AX, morphological changes with increased cell size and early yet incremental β-gal staining, imply the inception of premature senescence. Advent of SASP is attributed by prolonged secretion of pro-inflammatory cytokines along with untimely but significant G1/S cell cycle arrest. Telomeric dysfunction associated with premature senescence is indicative of early loss of TRF2 (telomeric repeat binding factor 2) protein and resultant multiple translocations. Induction of senescence-associated heterochromatic foci formation showcases the chromatin alterations in form of trimethylated H3K9me3 in conjunction with H4 hypoacetylation and altered miRNA expression. Anchorage-independent neoplastic growth observed in treated cells reaffirms the oncogenic transformation following the exposure. Collectively, we infer the possible role of SIPS, as a central phenomenon, to perturbed genomic integrity in ovarian surface epithelium, orchestrated through SASP and chromatin level alterations, a hitherto unknown molecular paradigm. Although translational utility of SIPS as a biomarker for estimating ovarian cancer risk seems evident, further investigations will be imperative to provide a tangible way for its precise validation in clinical settings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA